Mechanical Behavior of Stainless Steel Fiber-Reinforced Composites Exposed to Accelerated Corrosion
نویسندگان
چکیده
Recent advancements in metal fibers have introduced a promising new type of stainless steel fiber with high stiffness, high failure strain, and a thickness < 100 μm (<0.00394 in.) that can be utilized in a steel fiber-reinforced polymer. However, stainless steel is known to be susceptible to pitting corrosion. The main goal of this study is to compare the impact of corrosion on the mechanical properties of steel fiber-reinforced composites with those of conventional types of stainless steel. By providing experimental evidences, this study may promote the application of steel fiber-reinforced composite as a viable alternative to conventional metals. Samples of steel fiber-reinforced polymer and four different types of stainless steel were subjected to 144 and 288 h of corrosion in ferric chloride solution to simulate accelerated corrosion conditions. The weight losses due to corrosion were recorded. The corroded and control samples were tested under monotonic tensile loading to measure the ultimate stresses and strains. The effect of corrosion on the mechanical properties of the different materials was evaluated. The digital image correlation (DIC) technique was used to investigate the failure mechanism of the corrosion-damaged specimens. Overall, steel fiber-reinforced composites had the greatest corrosion resistance.
منابع مشابه
Accelerated Heat Aging Study of Phenolic/Basalt Fiber Reinforced Composites
One of the greatest impediments to use polymer-matrix composites is their susceptibility to degradation when exposed to the elevated temperatures and the limited knowledge on the thermal and mechanical properties of these composites at such temperatures. The objective of this study is to evaluate the effects of accelerated heat aging on the tensile properties of the Woven Basalt/Phenolic (WBP) ...
متن کاملIssues Related to Durability of Frp Reinforcement for Rc Structures Exposed to Accelerated Ageing
Corrosion of steel reinforcement in an aggressive environment constitutes a serious problem for many reinforced concrete (RC) structures. Fiber-reinforced polymers (FRP) rebars represent a potential solution to this situation. Even if FRP reinforcement shows a good resistance to electro-chemical corrosion, long-term behavior must be investigated and proven. The mechanical properties of FRP rods...
متن کاملSignificance of stainless steel wire reinforcement on the mechanical properties of GFRP composites
Investigations on flexural and tensile properties of GFRP laminates influenced by stainless steel wire reinforcement were carried out as a novel approach. Plain GFRP laminates and GFRP laminates reinforced with stainless steel wires at different depth with various pitch distances were fabricated by hand layup method. The composite specimens reinforced with steel wires were exposed to low freque...
متن کاملEvaluation of Hybrid Fiber Reinforced Concrete Exposed to Severe Environmental Conditions
Hybrid fiber reinforced concrete (HFRC) consisting of two or more different types of fibers has been widely investigated because of its superior mechanical properties. In the present study, the effect of the addition of steel (0.25%, 0.5%, 0.75%, and 1% of concrete volume) and Polypropylene (0.2%, 0.4%, and 0.6% of concrete volume) fibers on the surface scaling resistance of concrete, depth of ...
متن کاملCreep Behavior of Basalt and Glass Fiber Reinforced Epoxy Composites
The creep behavior of basalt fiber reinforced epoxy (BFRE) and glass fiber reinforced epoxy (GFRE) composites was studied through tensile testing at high temperature. To study the effect of reinforcing epoxy, the micro glass powder (MGP) was added at various volume percentage into the epoxy resin in BFRE composites. The initial strain for all the specimens were evaluated and compared with each ...
متن کامل